Add device tree

This commit is contained in:
Edward 2018-02-17 18:27:37 +01:00
parent 243675342a
commit 37ef30d1a1
8 changed files with 417 additions and 220 deletions

View File

@ -1,27 +1,53 @@
use cpu::CPU;
use devices;
use slog;
pub struct Chip {
log: slog::Logger,
pub cpu: CPU,
pub rom: Box<[u8]>,
pub ram: Box<[u8]>,
pub device_tree: devices::DeviceTree,
// TODO: List of devices
}
impl Chip {
pub fn new(log: slog::Logger, rom: Box<[u8]>) -> Chip {
// Internal registers
let internal_regs = devices::ram::RAM::new(log.clone());
let ram_device = devices::ram::RAM::new(log.clone());
let usart_device = devices::usart::USART::new(log.clone());
let mut dev_tree = devices::DeviceTree::new(log.clone());
// Add RAM and USART
dev_tree.add_device(
devices::Device::new(Box::new(ram_device), 0x2000, 0x2000)
);
dev_tree.add_device(
devices::Device::new(Box::new(internal_regs), 0, 0x40)
);
dev_tree.add_device(
devices::Device::new(Box::new(usart_device), 0x8A0, 0x8A7 - 0x8A0 + 1)
);
dev_tree.add_device(
devices::Device::new(
Box::new(devices::oscillator::Oscillator::new(log.clone())),
0x50, 0x07
)
);
Self {
log: log.clone(),
cpu: CPU::new(log),
rom: rom,
ram: Box::new([0u8; 0x4000]),
device_tree: dev_tree,
}
}
pub fn step(&mut self) -> bool {
match self.cpu.step(&mut self.rom, &mut self.ram) {
match self.cpu.step(&mut self.rom, &mut self.device_tree) {
Ok(_) => true,
Err(ref e) => {
warn!(self.log, "Error occured: {:?}", e);

View File

@ -6,6 +6,8 @@ use decoder::{IncrementMode, Instruction};
use regs::{GeneralPurposeRegister, GeneralPurposeRegisterPair, StatusFlag};
use chip_definitions;
use devices::DeviceTree;
use std::fmt;
use slog;
@ -73,14 +75,15 @@ impl CPU {
}
}
pub fn get_sp(&self, mem: &[u8]) -> u16 {
u16::from(mem[chip_definitions::IOAdress::SPL as usize])
| (u16::from(mem[chip_definitions::IOAdress::SPH as usize]) << 8)
pub fn get_sp(&self, mem: &mut DeviceTree) -> u16 {
let spl: u16 = mem.read(chip_definitions::IOAdress::SPL as u32) as u16;
let sph: u16 = mem.read(chip_definitions::IOAdress::SPH as u32) as u16;
sph << 8 | spl
}
fn set_sp(&self, mem: &mut [u8], val: u16) {
mem[chip_definitions::IOAdress::SPL as usize] = val as u8;
mem[chip_definitions::IOAdress::SPH as usize] = (val >> 8) as u8;
fn set_sp(&self, mem: &mut DeviceTree, val: u16) {
mem.write(chip_definitions::IOAdress::SPL as u32, val as u8);
mem.write(chip_definitions::IOAdress::SPH as u32, (val >> 8) as u8);
}
fn test_flag(&self, flag: StatusFlag) -> bool {
@ -121,163 +124,26 @@ impl CPU {
self.registers[r.as_usize()] = v;
}
fn ram_write(&self, ram: &mut [u8], addr: u16, val: u8) -> Result<(), CPUError> {
if addr as usize >= ram.len() {
error!(self.logger, "Ram write OOB: {:04X}={:02X}] ", addr, val);
Err(CPUError::OutOfBoundsException)
} else {
if addr < 0x2000 {
if addr != chip_definitions::IOAdress::SPH as u16
&& addr != chip_definitions::IOAdress::SPL as u16
{
// info!(self.logger, "Writing to IOR: {:04X} = {:02X}", addr, val);
}
if addr == chip_definitions::IOAdress::USARTC0_DATA as u16 {
// print!("USART_OUT:{: <3} ({}) ", val, (val as char).escape_debug());
info!(
self.logger,
"UART output: {: <3} ({})",
val,
(val as char).escape_debug()
);
} /* else if addr == chip_definitions::IOAdress::SPL as u16 {
} else if addr == chip_definitions::IOAdress::SPH as u16 {
} else if addr == chip_definitions::IOAdress::SREG as u16 {
} else if addr == chip_definitions::IOAdress::EIND as u16 {
} else if addr == chip_definitions::IOAdress::RAMPX as u16 {
} else if addr == chip_definitions::IOAdress::RAMPY as u16 {
} else if addr == chip_definitions::IOAdress::RAMPZ as u16 {
} else if addr == chip_definitions::IOAdress::RAMPD as u16 {
} else if addr == chip_definitions::IOAdress::OSC_CTRL as u16 {
} else if addr == chip_definitions::IOAdress::OSC_STATUS as u16 {
} else if addr == chip_definitions::IOAdress::CCP as u16 {
} else if addr == chip_definitions::IOAdress::CLK_CTRL as u16 {
} else if addr == 0x645 || addr == 0x641 || addr == 0x642 || addr == 0x646 { // PortC stuff
} else if addr == 0x8A3 || addr == 0x8A4 || addr == 0x8A5 || addr == 0x08A6 || addr == 0x8A7 { // Usart
} else if addr >= 0x1C0 && addr < 0x200 { // NVM
} else if addr == 0x600 || addr == 0x680 || addr == 0x626 || addr == 0x621 { // PortA/PortE
} else if addr == 0xA00 || addr == 0xA01 || addr == 0xA28 || addr == 0xA29 { // TCE0_CTRLA
} else if addr == 0xA2 { // PMIC
} else if addr == 0x43 { // CLK_RTCCTRL
} else if addr == 0x400 || addr == 0x401 || addr == 0x402 || addr == 0x40A || addr == 0x40B { // RTC_STATUS
} else if addr == 0x320 || addr == 0x321 || addr == 0x322 || addr == 0x328 || addr == 0x329 || addr == 0x32A || addr == 0x32B { // Dac
//} else if addr == 0x238{
} else {
return Err(CPUError::UnsupportedAddress);
}*/
}
ram[addr as usize] = val;
Ok(())
}
}
fn ram_read(&self, ram: &[u8], addr: u16) -> Result<u8, CPUError> {
// print!("[RAMR:{:04X}] ", addr);
if addr as usize >= ram.len() {
Err(CPUError::OutOfBoundsException)
} else {
// TODO: Hooks
if addr == chip_definitions::IOAdress::USARTC0_DATA as _ {
info!(self.logger, "Read from USART");
// return Err(CPUError::Exit);
// return Ok(b'\r')
// return Ok(0);
} else if addr == chip_definitions::IOAdress::USARTC0_STATUS as _ {
// info!(self.logger, "Read from USART status");
if self.pc == 0x5AC {
// USART data check -> Yes, there is indeed data available!
return Ok(0x80);
} else {
return Ok(0x20); // Usart is ready to send.
}
} else if addr == chip_definitions::IOAdress::OSC_STATUS as _ {
// HACK: Osci is set right..
return Ok(0x02);
} else if addr < 0x2000 {
if addr != chip_definitions::IOAdress::SPH as u16
&& addr != chip_definitions::IOAdress::SPL as u16
{
info!(self.logger, "Reading from IOR: {:04X}", addr);
}
/*
if addr == chip_definitions::IOAdress::SPL as u16 {
} else if addr == chip_definitions::IOAdress::SPH as u16 {
} else if addr == chip_definitions::IOAdress::SREG as u16 {
} else if addr == chip_definitions::IOAdress::EIND as u16 {
} else if addr == chip_definitions::IOAdress::RAMPX as u16 {
} else if addr == chip_definitions::IOAdress::RAMPY as u16 {
} else if addr == chip_definitions::IOAdress::RAMPZ as u16 {
} else if addr == chip_definitions::IOAdress::RAMPD as u16 {
} else if addr == chip_definitions::IOAdress::OSC_CTRL as u16 {
} else if addr == chip_definitions::IOAdress::OSC_STATUS as u16 {
} else if addr == chip_definitions::IOAdress::CCP as u16 {
} else if addr > 0x1C0 && addr < 0x200 { // NVM status
} else if addr == 0x8A3 || addr == 0x8A4 { // Usart
} else if addr == 0xA2 { // PMIC
} else if addr == 0x402 { // RTC_INTCTRL
} else if addr == 0x400 || addr == 0x401 || addr == 0x402 { // RTC_CTRL
} else if addr == 0x320 || addr == 0x321 || addr == 0x322 {
// DAC? @DD2E
} else if addr == 0x230 || addr == 0x231 || addr == 0x234 || addr == 0x235 { // ADC
} else if addr >= 0x1f00 {
} else {
return Err(CPUError::UnsupportedAddress);
}
*/
}
Ok(ram[addr as usize])
}
}
fn push(&mut self, ram: &mut [u8], val: u8) -> Result<(), CPUError> {
let sp = self.get_sp(ram);
self.ram_write(ram, sp, val)?;
self.set_sp(ram, sp.wrapping_sub(1));
fn ram_write(&self, device_tree: &mut DeviceTree, addr: u16, val: u8) -> Result<(), CPUError> {
device_tree.write(addr as u32, val);
Ok(())
}
fn pop(&mut self, ram: &mut [u8]) -> Result<u8, CPUError> {
let sp = self.get_sp(ram);
self.set_sp(ram, sp.wrapping_add(1));
self.ram_read(ram, sp.wrapping_add(1))
fn ram_read(&self, device_tree: &mut DeviceTree, addr: u16) -> Result<u8, CPUError> {
Ok(device_tree.read(addr as u32))
}
fn push(&mut self, device_tree: &mut DeviceTree, val: u8) -> Result<(), CPUError> {
let sp = self.get_sp(device_tree);
self.ram_write(device_tree, sp, val)?;
self.set_sp(device_tree, sp.wrapping_sub(1));
Ok(())
}
fn pop(&mut self, device_tree: &mut DeviceTree) -> Result<u8, CPUError> {
let sp = self.get_sp(device_tree);
self.set_sp(device_tree, sp.wrapping_add(1));
self.ram_read(device_tree, sp.wrapping_add(1))
}
// Flag update functions on a single value:
@ -366,7 +232,7 @@ impl CPU {
}
// Returns # of ticks the executed instruction took
pub fn step(&mut self, rom: &mut [u8], ram: &mut [u8]) -> Result<usize, CPUError> {
pub fn step(&mut self, rom: &mut [u8], device_tree: &mut DeviceTree) -> Result<usize, CPUError> {
// Instruction fetch
if (self.pc as usize) * 2 >= rom.len() {
return Err(CPUError::OutOfBoundsException);
@ -380,7 +246,7 @@ impl CPU {
self.logger,
"CPU: pc={:06X} sp={:04X} Fetch: {: <40}",
self.pc,
self.get_sp(ram),
self.get_sp(device_tree),
format!("{}", ins)
);
@ -449,10 +315,12 @@ impl CPU {
}
IncrementMode::ConstantOffset(o) => base.wrapping_add(u16::from(o)),
};
self.ram_write(ram, addr, self.get_register(src_reg))?;
}
self.ram_write(device_tree, addr, self.get_register(src_reg))?;
},
Instruction::LD(ref dst_reg, ref ptr, ref inc_mode) => {
let base = self.get_register_pair(ptr);
/*
// TODO: RAMPX/Y/Z
if ptr.low() == 26 && ram[chip_definitions::IOAdress::RAMPX as usize] > 0 {
panic!("Unexpected");
} else if ptr.low() == 28 && ram[chip_definitions::IOAdress::RAMPY as usize] > 0 {
@ -460,6 +328,7 @@ impl CPU {
} else if ptr.low() == 30 && ram[chip_definitions::IOAdress::RAMPZ as usize] > 0 {
panic!("Unexpected");
}
*/
let addr = match *inc_mode {
IncrementMode::None => base,
IncrementMode::PreDecrement => {
@ -472,20 +341,21 @@ impl CPU {
}
IncrementMode::ConstantOffset(o) => base.wrapping_add(u16::from(o)),
};
let v = self.ram_read(ram, addr)?;
let v = self.ram_read(device_tree, addr)?;
self.set_register(dst_reg, v);
}
Instruction::ELPM(ref dst_reg, ref inc_mode) => {
let Zb = self.get_register_pair(&30u8.into());
// TODO: Only use required bits, other read as zero (according to datasheet)
let Z =
Zb as usize | (ram[chip_definitions::IOAdress::RAMPZ as usize] as usize) << 16;
Zb as usize |
(device_tree.read(chip_definitions::IOAdress::RAMPZ as u32) as usize) << 16;
match *inc_mode {
IncrementMode::PostIncrement => {
self.set_register_pair(&30u8.into(), Zb.wrapping_add(1));
ram[chip_definitions::IOAdress::RAMPZ as usize] =
(Z.wrapping_add(1) >> 16) as u8;
}
device_tree.write(chip_definitions::IOAdress::RAMPZ as u32, (Z.wrapping_add(1) >> 16) as u8);
},
_ => {
// This instruction does only support None + PostIncrement
}
@ -519,40 +389,40 @@ impl CPU {
}
Instruction::OUT(ref addr, ref val) => {
let val = self.get_register(val);
self.ram_write(ram, *addr, val)?;
}
self.ram_write(device_tree, *addr, val)?;
},
Instruction::IN(ref reg, ref addr) => {
let v = self.ram_read(ram, *addr)?;
let v = self.ram_read(device_tree, *addr)?;
self.set_register(reg, v);
}
Instruction::CALL(ref addr) => {
let ret_to = self.pc;
self.push(ram, ((ret_to >> 16) & 0xFF) as u8)?;
self.push(ram, ((ret_to >> 8) & 0xFF) as u8)?;
self.push(ram, (ret_to & 0xFF) as u8)?;
self.push(device_tree, ((ret_to >> 16) & 0xFF) as u8)?;
self.push(device_tree, ((ret_to >> 8) & 0xFF) as u8)?;
self.push(device_tree, (ret_to & 0xFF) as u8)?;
self.pc = *addr;
}
Instruction::RCALL(ref addr) => {
let ret_to = self.pc;
self.push(ram, ((ret_to >> 16) & 0xFF) as u8)?;
self.push(ram, ((ret_to >> 8) & 0xFF) as u8)?;
self.push(ram, (ret_to & 0xFF) as u8)?;
self.pc = ((self.pc as i32) + i32::from(*addr)) as u32;
}
self.push(device_tree, ((ret_to >> 16) & 0xFF) as u8)?;
self.push(device_tree, ((ret_to >> 8) & 0xFF) as u8)?;
self.push(device_tree, (ret_to & 0xFF) as u8)?;
self.pc = (self.pc as i32 + *addr as i32) as u32;
},
Instruction::RET => {
let mut ret_to = u32::from(self.pop(ram)?);
ret_to += u32::from(self.pop(ram)?) << 8;
ret_to += u32::from(self.pop(ram)?) << 16;
let mut ret_to = self.pop(device_tree)? as u32;
ret_to += (self.pop(device_tree)? as u32) << 8;
ret_to += (self.pop(device_tree)? as u32) << 16;
self.pc = ret_to as _;
}
Instruction::POP(ref reg) => {
let v = self.pop(ram)?;
let v = self.pop(device_tree)?;
self.registers[reg.as_usize()] = v;
}
Instruction::PUSH(ref reg) => {
let v = self.registers[reg.as_usize()];
self.push(ram, v)?;
}
self.push(device_tree, v)?;
},
Instruction::SUBI(ref d, ref v) => {
let dv = self.get_register(d);
let vres = dv.wrapping_sub(*v);
@ -675,25 +545,21 @@ impl CPU {
self.update_flags_zns_8(res);
}
Instruction::STS16(ref addr, ref r) => {
let rampd = u32::from(ram[chip_definitions::IOAdress::RAMPD as usize]);
if rampd != 0 {
panic!("This is unexpected (for now)");
}
self.ram_write(ram, *addr, self.get_register(r))?;
}
let rampd = device_tree.read(chip_definitions::IOAdress::RAMPD as u32);
if rampd != 0 { panic!("This is unexpected (for now)"); }
self.ram_write(device_tree, *addr, self.get_register(r))?;
},
Instruction::STS8(ref addr, ref r) => {
self.ram_write(ram, u16::from(*addr), self.get_register(r))?;
}
self.ram_write(device_tree, *addr as u16, self.get_register(r))?;
},
Instruction::LDS16(ref r, ref addr) => {
let rampd = u32::from(ram[chip_definitions::IOAdress::RAMPD as usize]);
if rampd != 0 {
panic!("This is unexpected (for now)");
}
let v = self.ram_read(ram, *addr)?;
let rampd = device_tree.read(chip_definitions::IOAdress::RAMPD as u32);
if rampd != 0 { panic!("This is unexpected (for now)"); }
let v = self.ram_read(device_tree, *addr)?;
self.set_register(r, v);
}
Instruction::LDS8(ref r, ref addr) => {
let v = self.ram_read(ram, u16::from(*addr))?;
let v = self.ram_read(device_tree, *addr as u16)?;
self.set_register(r, v);
}
Instruction::LSL(ref r) => {

79
src/devices/mod.rs Normal file
View File

@ -0,0 +1,79 @@
// All devices are implemented here.
use slog::Logger;
pub mod ram;
pub mod usart;
pub mod oscillator;
pub trait DeviceImpl {
/// addr relative to the start of the device memory map.
fn read(&mut self, addr: u32) -> u8;
/// addr relative to the start of the device memory map.
fn write(&mut self, addr: u32, value: u8);
}
pub struct Device {
start_addr: u32,
addr_len: u32,
device: Box<DeviceImpl>,
}
impl Device {
pub fn new(device: Box<DeviceImpl>, start_addr: u32, addr_len: u32) -> Self {
Self {
start_addr: start_addr,
addr_len: addr_len,
device: device,
}
}
pub fn handles_addr(&self, addr: u32) -> bool {
addr >= self.start_addr && addr - self.start_addr < self.addr_len
}
pub fn read(&mut self, addr: u32) -> u8 {
self.device.read(addr - self.start_addr)
}
pub fn write(&mut self, addr: u32, val: u8) {
self.device.write(addr - self.start_addr, val)
}
}
pub struct DeviceTree {
log: Logger,
devices: Vec<Device>,
}
impl DeviceTree {
pub fn new(log: Logger) -> Self {
Self {
log: log,
devices: Vec::new(),
}
}
pub fn add_device(&mut self, device: Device) {
self.devices.push(device);
}
fn get_device_for_addr(&mut self, addr: u32) -> Option<&mut Device> {
self.devices.iter_mut().filter(|d| d.handles_addr(addr)).nth(0)
}
pub fn read(&mut self, addr: u32) -> u8 {
if let Some(ref mut d) = self.get_device_for_addr(addr) {
return d.read(addr);
}
warn!(self.log, "Trying to read unmapped I/O: {:08X}", addr);
0
}
pub fn write(&mut self, addr: u32, val: u8) {
if let Some(ref mut d) = self.get_device_for_addr(addr) {
return d.write(addr, val);
}
warn!(self.log, "Trying to write unmapped I/O: {:08X} <- {:02X}", addr, val);
}
}

120
src/devices/oscillator.rs Normal file
View File

@ -0,0 +1,120 @@
// Oscillator
use devices::DeviceImpl;
use slog::Logger;
const OSC_CTRL: u32 = 0;
const OSC_STATUS: u32 = 1;
const OSC_XOSCCTRL: u32 = 2;
const OSC_XOSCFAIL: u32 = 3;
const OSC_RC32KCAL: u32 = 4;
const OSC_PLLCTRL: u32 = 5;
const OSC_DFLLCTRL: u32 = 6;
enum PllSrc {
RC2M,
RC32M,
XOSC,
}
pub struct Oscillator {
log: Logger,
reg_values: [u8; 7],
// Real attributes:
ctrl: u8,
status: u8,
xoscctrl: u8,
xoscfail: u8,
rs32kcal: u8,
pllsrc: PllSrc,
pllfac: u8,
dfllctrl: u8,
}
impl Oscillator {
pub fn new(log: Logger) -> Self {
Self {
log: log,
reg_values: [0u8; 7],
ctrl: 0,
status: 0,
xoscctrl: 0,
xoscfail: 0,
rs32kcal: 0,
pllsrc: PllSrc::RC2M,
pllfac: 0,
dfllctrl: 0,
}
}
}
impl DeviceImpl for Oscillator {
fn read(&mut self, addr: u32) -> u8 {
match addr {
OSC_CTRL => {
// PLL and clock ready.
return self.ctrl | 0x30;
}
OSC_STATUS => {
return self.status | 0x30;
}
_ => {}
}
self.reg_values[addr as usize]
}
fn write(&mut self, addr: u32, value: u8) {
match addr {
OSC_CTRL => {
info!(self.log, "OSC_CTRL <= {:02X}", value);
self.ctrl = value & 0x1F;
self.status = value & 0x1F;
}
OSC_XOSCCTRL => {
self.xoscctrl = value & 0xEF;
}
OSC_XOSCFAIL => {
},
_ => {}
}
self.reg_values[addr as usize] = value;
}
/*
} else if(addr == 0x03) { // XOSCFAIL
XOSCFAIL vreg;
vreg.data = v & 0x03;
// XOSCFDEN
if(!xoscfail_.xoscfden && vreg.xoscfden) {
if(device_->ccpState() & Device::CCP_IOREG) {
xoscfail_.xoscfden = 1;
} else {
LOGF(ERROR, "cannot set XOSCFAIL.XOSCFDEN: protected by CCP");
}
} else if(xoscfail_.xoscfden && !vreg.xoscfden) {
LOGF(ERROR, "XOSCFAIL.XOSCFDEN cannot be cleared");
}
// XOSCFDIF
if(vreg.xoscfdif) {
xoscfail_.xoscfdif = 0;
}
} else if(addr == 0x04) { // RC32KCAL
rc32kcal_ = v;
} else if(addr == 0x05) { // PLLCTRL
if((v >> 6) == 1) {
LOGF(ERROR, "invalid PLLSRC value");
} else {
pllsrc_ = static_cast<PLLSRC>(v >> 6);
}
pllfac_ = v & 0x1F;
} else if(addr == 0x06) { // DFLLCTRL
//TODO no check nor handling is made here
dfllctrl_.data = v & 0x03;
} else {
LOGF(ERROR, "I/O write %s + 0x%02X: not writable") % name() % addr;
}
*/
}

27
src/devices/ram.rs Normal file
View File

@ -0,0 +1,27 @@
// RAM 'device'
use devices::DeviceImpl;
use slog::Logger;
pub struct RAM {
log: Logger,
data: Box<[u8]>,
}
impl RAM {
pub fn new(log: Logger) -> Self {
Self {
log: log,
data: Box::new([0u8; 0x4000]),
}
}
}
impl DeviceImpl for RAM {
fn read(&mut self, addr: u32) -> u8 {
self.data[addr as usize]
}
fn write(&mut self, addr: u32, value: u8) {
self.data[addr as usize] = value;
}
}

79
src/devices/usart.rs Normal file
View File

@ -0,0 +1,79 @@
use devices::DeviceImpl;
use std;
use slog::Logger;
const USART_DATA: u32 = 0;
const USART_STATUS: u32 = 1;
const USART_CTRLA: u32 = 3;
const USART_CTRLB: u32 = 4;
const USART_CTRLC: u32 = 5;
const USART_BAUDCTRLA: u32 = 6;
const USART_BAUDCTRLB: u32 = 7;
pub struct USART {
/*
0x8A0: 'USARTC0_DATA',
0x8A1: 'USARTC0_STATUS',
0x8A3: 'USARTC0_CTRLA',
0x8A4: 'USARTC0_CTRLB',
0x8A5: 'USARTC0_CTRLC',
0x8A6: 'USARTC0_BAUDCTRLA',
0x8A7: 'USARTC0_BAUDCTRLB',
*/
log: Logger,
// Raw values:
status: u8,
ctrla: u8,
ctrlb: u8,
ctrlc: u8,
baudctrla: u8,
baudctrlb: u8,
}
impl USART {
pub fn new(log: Logger) -> Self {
Self {
log: log,
status: 0,
ctrla: 0,
ctrlb: 0,
ctrlc: 0,
baudctrla: 0,
baudctrlb: 0,
}
}
}
impl DeviceImpl for USART {
fn read(&mut self, addr: u32) -> u8 {
match addr {
USART_DATA => {
info!(self.log, "USART::Read(), not implemented");
0
},
USART_STATUS => self.status,
USART_CTRLA => self.ctrla,
USART_CTRLB => self.ctrlb,
USART_CTRLC => self.ctrlc,
USART_BAUDCTRLA => self.baudctrla,
USART_BAUDCTRLB => self.baudctrlb,
_ => unreachable!()
}
}
fn write(&mut self, addr: u32, value: u8) {
match addr {
USART_DATA => {
info!(self.log, "USART::Write({} / {:?})", value, std::char::from_u32(u32::from(value)));
},
USART_STATUS => self.status = value,
USART_CTRLA => self.ctrla = value,
USART_CTRLB => self.ctrlb = value,
USART_CTRLC => self.ctrlc = value,
USART_BAUDCTRLA => self.baudctrla = value,
USART_BAUDCTRLB => self.baudctrlb = value,
_ => panic!("Write to usart offset {} <- {:02X}", addr, value),
}
}
}

View File

@ -118,12 +118,12 @@ struct GDBStub<'a> {
}
impl<'a> GDBStub<'a> {
fn stop_reply(&self) -> String {
fn stop_reply(&mut self) -> String {
// Send SIGTRAP along with SREG/SP/PC.
format!(
"T0520:{:02X};21:{:04X};22:{:08X};",
self.chip.cpu.sreg,
self.chip.cpu.get_sp(&self.chip.ram).swap_bytes(),
self.chip.cpu.get_sp(&mut self.chip.device_tree).swap_bytes(),
(2 * self.chip.cpu.pc).swap_bytes()
).to_string()
}
@ -217,15 +217,14 @@ impl<'a> GDBStub<'a> {
"Xfer" => {
response = format!(
"l<memory-map>\n\
<memory type='ram' start='0x800000' length='0x{:X}' />\n\
<memory type='flash' start='0' length='0x{:X}'>\n\
<property name='blocksize'>0x80</property>\n\
</memory></memory-map>",
self.chip.ram.len(),
<memory type='ram' start='0x800000' length='0x{:X}' />\n\
<memory type='flash' start='0' length='0x{:X}'>\n\
<property name='blocksize'>0x80</property>\n\
</memory></memory-map>",
/*self.chip.ram.len()*/ 0x4000,
self.chip.rom.len()
).to_string()
.into();
}
).to_string().into();
},
"C" => response = "01".into(),
query => {
warn!(self.log, "Unknown query: '{}'", query);
@ -247,7 +246,7 @@ impl<'a> GDBStub<'a> {
// SP
reg_vals.push(format!(
"{:04X}",
self.chip.cpu.get_sp(&self.chip.ram).swap_bytes()
self.chip.cpu.get_sp(&mut self.chip.device_tree).swap_bytes()
));
// PC
reg_vals.push(format!("{:08X}", (2 * self.chip.cpu.pc).swap_bytes()));
@ -292,14 +291,14 @@ impl<'a> GDBStub<'a> {
if addr & 0x00f00000 > 0 {
// RAM:
let addr_i = addr & 0xFFFFF;
if addr_i >= self.chip.ram.len() {
if addr_i >= 0x4000 {
// Partial read case.
if data.is_empty() {
err = true;
}
break;
}
data.push(format!("{:02X}", self.chip.ram[addr_i]));
data.push(format!("{:02X}", self.chip.device_tree.read(addr_i as u32)));
} else {
// ROM
if addr >= self.chip.rom.len() {
@ -331,12 +330,11 @@ impl<'a> GDBStub<'a> {
if addr & 0x00f00000 > 0 {
// RAM:
let addr_i = addr & 0xFFFFF;
if addr_i >= self.chip.ram.len() {
if addr_i >= 0x4000 {
err = true;
break;
}
self.chip.ram[addr_i] =
u8::from_str_radix(&value[2 * i..2 * (i + 1)], 16).unwrap_or(0);
self.chip.device_tree.write(addr_i as u32, u8::from_str_radix(&value[2 * i..2 * (i + 1)], 16).unwrap_or(0));
} else {
// ROM
if addr >= self.chip.rom.len() {

View File

@ -14,6 +14,7 @@ use slog::Drain;
mod cpu;
mod regs;
mod decoder;
mod devices;
mod chip;
mod chip_definitions;
mod gdbstub;
@ -46,7 +47,8 @@ fn main() {
while chip.step() {}
}
warn!(log, "{}", &chip.cpu);
write_file("ram.dmp", &chip.ram).unwrap();
// TODO: Figure out how to write an full ram dump easily.
// write_file("ram.dmp", &chip.ram).unwrap();
}
pub fn read_file<P: AsRef<Path>>(rom_path: P) -> Result<Box<[u8]>, io::Error> {